Publications

Optical Dendrometry

Bourbia, I., Pritzkow, C., & Brodribb, T. J. (2021). Herb and conifer roots show similar high sensitivity to water deficit. Plant Physiology, 186(4). https://doi.org/10.1093/plphys/kiab207 Commercial version

Bourbia, I., Carins-Murphy, M. R., Gracie, A., & Brodribb, T. J. (2020). Xylem cavitation isolates leaky flowers during water stress in pyrethrum. New Phytologist, 227(1), 146–155. https://doi.org/10.1111/nph.16516 Commercial version

Cavitation Imaging

Johnson, K. M., Lucani, C., & Brodribb, T. J. (2022). In vivo monitoring of drought-induced embolism in Callitris rhomboidea trees reveals wide variation in branchlet vulnerability and high resistance to tissue death. New Phytologist, 233(1), 207–218. https://doi.org/10.1111/nph.17786

Sorek, Y., Grinshtein, S., Netzer, Y., Shtein, I., Jansen, S., & Hochberg, U. (2020). An increase in xylem embolism resistance of grapevine leaves during the growing season is coordinated with stomatal regulation, turgor loss point, and intervessel pit membranes. New Phytologist. https://doi.org/10.1111/nph.17025 Commercial version

Gauthey, A., Peters, J. M. R., Carins-Murphy, M. R., Rodriguez-Dominguez, C. M., Li, X., Delzon, S., … Choat, B. (2020). Visual and hydraulic techniques produce similar estimates of cavitation resistance in woody species. New Phytologist, 228(3), 884–897. https://doi.org/10.1111/nph.16746 Commercial version

Rodriguez-Dominguez CM, Carins Murphy MR, Lucani C, Brodribb TJ (2018) Mapping xylem failure in disparate organs of whole plants reveals extreme resistance in olive roots. New Phytologist. Commercial version

Corso, D., Delzon, S., Lamarque, L. J., Cochard, H., Torres-Ruiz, J. M., King, A., & Brodribb, T. (2020). Neither xylem collapse, cavitation, or changing leaf conductance drive stomatal closure in wheat. Plant Cell and Environment, 43(4), 854–865. https://doi.org/10.1111/pce.13722 Commercial version

Johnson, K. M., Brodersen, C., Carins-Murphy, M. R., Choat, B., & Brodribb, T. J. (2020). Xylem Embolism Spreads by Single-Conduit Events in Three Dry Forest Angiosperm Stems1[OPEN]. Plant Physiology, 184(1), 212–222. https://doi.org/10.1104/PP.20.00464 Commercial version

Cardoso, A. A., Visel, D., Kane, C. N., Batz, T. A., García Sánchez, C., Kaack, L., … McAdam, S. A. M. (2020). Drought-induced lacuna formation in the stem causes hydraulic conductance to decline before xylem embolism in Selaginella. New Phytologist, 227(6), 1804–1817. https://doi.org/10.1111/nph.16649

Suissa, J. S., & Friedman, W. E. (2021). From cells to stems: the effects of primary vascular construction on drought‐induced embolism in fern rhizomes. New Phytologist. https://doi.org/10.1111/nph.17629 Commercial version

Li, X., Blackman, C. J., Peters, J. M. R., Choat, B., Rymer, P. D., Medlyn, B. E., & Tissue, D. T. (2019). More than iso/anisohydry: Hydroscapes integrate plant water use and drought tolerance traits in 10 eucalypt species from contrasting climates. Functional Ecology, 33(6), 1035–1049. https://doi.org/10.1111/1365-2435.13320 Commercial version

Avila, R. T., Cardoso, A. A., Batz, T. A., Kane, C. N., DaMatta, F. M., & McAdam, S. A. M. (2021). Limited plasticity in embolism resistance in response to light in leaves and stems in species with considerable vulnerability segmentation. Physiologia Plantarum, 172(4), 2142–2152. https://doi.org/10.1111/ppl.13450

Guan, X., Pereira, L., McAdam, S., Cao, K.-F., & Jansen, S. (2020). No gas source, no problem: pre-existing embolism may affect non-pressure driven embolism spreading in angiosperm xylem by gas diffusion. Authorea Preprints, (410768178), 1–18. Retrieved from https://www.authorea.com/users/349270/articles/474338-no-gas-source-no-problem-pre-existing-embolism-may-affect-non-pressure-driven-embolism-spreading-in-angiosperm-xylem-by-gas-diffusion?commit=960742a1e2ffacc5494453d3ea5235fc0937b112